4 research outputs found

    Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations

    Get PDF
    Each vestibular sensory epithelium in the inner ear is divided morphologically and physio- logically into two zones, called the striola and extrastriola in otolith organ maculae, and the central and peripheral zones in semicircular canal cristae. We found that formation of striolar/central zones during embryogenesis requires Cytochrome P450 26b1 (Cyp26b1)- mediated degradation of retinoic acid (RA). In Cyp26b1 conditional knockout mice, formation of striolar/central zones is compromised, such that they resemble extrastriolar/peripheral zones in multiple features. Mutants have deficient vestibular evoked potential (VsEP) responses to jerk stimuli, head tremor and deficits in balance beam tests that are consistent with abnormal vestibular input, but normal vestibulo-ocular reflexes and apparently normal motor performance during swimming. Thus, degradation of RA during embryogenesis is required for formation of highly specialized regions of the vestibular sensory epithelia with specific functions in detecting head motions

    Effects of vestibular neurectomy and neural compensation on head movements in patients undergoing vestibular schwannoma resection

    No full text
    Abstract The vestibular system is vital for maintaining balance and stabilizing gaze and vestibular damage causes impaired postural and gaze control. Here we examined the effects of vestibular loss and subsequent compensation on head motion kinematics during voluntary behavior. Head movements were measured in vestibular schwannoma patients before, and then 6 weeks and 6 months after surgical tumor removal, requiring sectioning of the involved vestibular nerve (vestibular neurectomy). Head movements were recorded in six dimensions using a small head-mounted sensor while patients performed the Functional Gait Assessment (FGA). Kinematic measures differed between patients (at all three time points) and normal subjects on several challenging FGA tasks, indicating that vestibular damage (caused by the tumor or neurectomy) alters head movements in a manner that is not normalized by central compensation. Kinematics measured at different time points relative to vestibular neurectomy differed substantially between pre-operative and 6-week post-operative states but changed little between 6-week and > 6-month post-operative states, demonstrating that compensation affecting head kinematics is relatively rapid. Our results indicate that quantifying head kinematics during self-generated gait tasks provides valuable information about vestibular damage and compensation, suggesting that early changes in patient head motion strategy may be maladaptive for long-term vestibular compensation

    Head movement kinematics are differentially altered for extended versus short duration gait exercises in individuals with vestibular loss

    No full text
    Abstract Head kinematics are altered in individuals with vestibular schwannoma (VS) during short duration gait tasks [i.e., Functional Gait Assessment (FGA)], both before and after surgery, yet whether these differences extend to longer duration gait exercises is currently unknown. Here we examined the effects of vestibular loss and subsequent compensation on head kinematics in individuals with VS during gait exercises of relatively extended versus short duration (< 10 versus 30 s), compared to age-matched controls. Six-dimensional head movements were recorded during extended and short duration gait exercises before and then 6 weeks after sectioning of the involved vestibular nerve (vestibular neurectomy). Standard functional, physiological, and subjective clinical assessments were also performed at each time point. Kinematics were differentially altered in individuals with vestibular loss at both time points during extended versus short duration exercises. Range of motion was significantly reduced in extended tasks. In contrast, movement variability predominately differed for the short duration exercises. Overall, our results indicate that quantifying head kinematics during longer duration gait tasks can provide novel information about how VS individuals compensate for vestibular loss, and suggest that measurements of range of motion versus variability can provide information regarding the different strategies deployed to maintain functional locomotion

    Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations

    Get PDF
    Each vestibular sensory epithelium in the inner ear is divided morphologically and physio- logically into two zones, called the striola and extrastriola in otolith organ maculae, and the central and peripheral zones in semicircular canal cristae. We found that formation of striolar/central zones during embryogenesis requires Cytochrome P450 26b1 (Cyp26b1)- mediated degradation of retinoic acid (RA). In Cyp26b1 conditional knockout mice, formation of striolar/central zones is compromised, such that they resemble extrastriolar/peripheral zones in multiple features. Mutants have deficient vestibular evoked potential (VsEP) responses to jerk stimuli, head tremor and deficits in balance beam tests that are consistent with abnormal vestibular input, but normal vestibulo-ocular reflexes and apparently normal motor performance during swimming. Thus, degradation of RA during embryogenesis is required for formation of highly specialized regions of the vestibular sensory epithelia with specific functions in detecting head motions
    corecore